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Abstract

Current Intelligent Tutoring Systems (ITS) face a critical paradox: while they can improve
immediate performance, they often promote cognitive off-loading that fosters dependency rather
than independent learning. This paper introduces Conceptual Regression Depth (CReD), a
framework that leverages prerequisite learning paths to guide remediation as an alternative to
cognitive off-loading. CReD functions by parsing educator supplied instructional content into
discrete concept units, constructing directed acyclic graphs of prerequisite relationships and
classifying concepts by Bloom’s taxonomy cognitive levels. Learner errors are mapped onto this
structure, and CReD scores are calculated as shortest path distances between observed
difficulties and their prerequisite gaps. Patterns of learner interaction are then transformed into
sparse matrices suitable for I[tem Response Theory (IRT) modeling, enabling precise diagnostics,
targeted intervention, and validation of dependency pathways. CReD addresses two critical
challenges: the dependency risks associated with Al tutoring and the need for individualized
support in contexts where 74% of U.S. schools report teacher shortages. Through a human-in-
the-loop design, CReD supplements rather than replaces educators, offering evidence-based
diagnostics while maintaining teacher oversight. Its dual-metric approach distinguishes between
internal prerequisite deficiencies and external knowledge gaps, providing particular value in
identifying foundational skill deficits. CReD contributes a systematic method for quantifying
remediation, extracting psychometric insights from natural learning conversations, and

integrating with curricular structures while preserving educators' pedagogical oversight.



1. Introduction and Background

1.1 The Promise and Peril of Intelligent Tutoring Systems

Current Intelligent Tutoring Systems (ITS) excel at content personalization but require careful
guardrails when applied in educational contexts. Research has raised significant concerns
regarding the long-term impact of over reliance on these systems, revealing a troubling pattern:
while Al tutoring can improve immediate performance, it may undermine the very skills

education seeks to develop.

A recent study by Michael Gerlich at SBS Swiss Business School demonstrated that increased
reliance on artificial intelligence (AI) was associated with the erosion of critical thinking skills,
largely due to cognitive off-loading, a process in which individuals reduce their mental effort by
depending on Al tools (Gerlich, 2025). This finding was reinforced by controlled research at the
University of Pennsylvania, which found that students performed better while using an Al tutor,
yet once the tutor was removed, those same students performed worse compared with peers who
had never relied on an Al system (Bastani et al., 2024). These findings suggest that students may
come to use Al as a crutch, thereby missing opportunities to engage in independent thinking and

problem-solving.

1.2 Limitations of Current Approaches

The effective implementation of ITS in education requires frameworks that not only support
learning but also promote critical thinking and align with classroom pedagogy (Favero et al.,
2025). However, existing ITS approaches reveal important limitations across multiple

dimensions. Systems that assess student knowledge through binary mastery classifications,



indicating only whether a concept is understood or not, may provide surface-level diagnostics
and immediate remediation, but they do not offer systematic guidance on the depth of
remediation needed (Ostrow et al., 2015). Recent research has shown that Al systems face
systematic challenges in logical reasoning, limiting their capacity to diagnose foundational

learning deficiencies without a structured instructional framework (Mirzadeh et al., 2025).

Framework-based Al tutors that impose externally designed taxonomic structures risk
misalignment with classroom pedagogies (Diaz & Nussbaum, 2024). Additionally, external
taxonomic structures may risk Simplicity Bias caused by large language models (LLM) to use
more complex terminology than necessary (Kuribayashi et al., 2024). Current educational
technologies more broadly lack integration with robust measurement and psychometric modeling
(Chang, 2024). Psychometric data provides educators with clear interpretable insight on student

learning and challenges.

1.3 The Conceptual Regression Depth Framework

To address these challenges, this paper introduces Conceptual Regression Depth (CReD), a
framework that quantifies prerequisite learning distances while simultaneously generating
psychometric profiles from conversational learning data. This work was influenced by Hu (2024)

who stated:

"While the journey towards intelligent adaptive learning systems is complex and uncharted, the
destination is one worth pursuing. By thoughtfully leveraging Al to enhance psychometric
assessments and personalized support, we have the potential to revolutionize education, enabling

every student - regardless of their learning difficulties - to thrive and reach their full potential. It



is a grand challenge, but one that promises profound benefits for individual learners,

educational equity and society at large."

Unlike traditional applications of psychometric approaches that rely on formal assessments,
CReD-integrated ITS transforms patterns of student interaction, including mistakes, questions,
and problem-solving attempts, into Item Response Theory parameters that capture individual
ability estimates and concept difficulty calibrations. The proposed system draws topic
progression, content guidelines and item banks from teacher-supplied artifacts that align with a

student's classroom learning environment.

This approach provides teachers with precise diagnostic information about student progress and
enables evidence-based refinement of learning trajectories and remediation pathways. In doing
so, the framework strengthens foundational concepts by providing attentive remediation and

promoting critical thinking through the ITS, rather than serving as a crutch.

1.4 Addressing Educational Workforce Challenges

Beyond technological considerations, the framework also responds to pressing challenges in the
educational workforce. Public schools in the United States entered the 202425 academic year
with an average of six teaching vacancies, and seventy-four percent reported difficulty filling one
or more of those positions with fully certified teachers (NCES, 2024). A review conducted by the
Learning Policy Institute in July 2025 reported that one in eight teaching positions was either

unfilled or staffed by under-qualified teachers (LPI, 2025).

Simultaneously, educational outcomes reveal urgent needs for individualized support. The

Nation's Report Card in 2024 revealed that fewer than one-third of students nationwide were



performing at the National Assessment of Educational Progress (NAEP) Proficient level in
reading at grades four and twelve (NAGB, 2025). The demand for individualized student

attention is therefore critical.

By introducing a human-in-the-loop design, the CReD framework augments rather than replaces
teachers, offering guided support that mirrors classroom pedagogy while equipping educators
with diagnostics that would otherwise require dramatically smaller class sizes. Our framework
extends the reach of quality instruction beyond traditional classroom constraints while preserving

the central role of educators in the learning process.

2. Methodology

2.1 System Overview

We developed a computational framework for Conceptual Regression Depth (CReD), a dual-
metric system that quantifies the prerequisite distance a learner must traverse backward in a
structured concept hierarchy and identifies external knowledge deficiencies that contribute to
learning gaps. Our approach constructs the concept graph and progression rules directly from
teacher-supplied curricular artifacts, including textbook chapters, lesson plans, and instructional
notes. By grounding the prerequisite structure in instructional materials familiar to the learner,
the system ensures alignment with classroom pedagogy and facilitates contextually relevant

remediation.

The framework operates through six sequential and interdependent stages that transform
curricular content into diagnostic and psychometric profiles. Beginning with automated parsing

and semantic structuring of teacher-uploaded instructional content into discrete concept units, the



system extracts inter-concept dependency relations and represents them as a directed acyclic
graph (DAG) to preserve logical learning order. The framework then identifies and categorizes
critical external knowledge requirements that fall outside the primary learning sequence but
remain essential for concept mastery, followed by systematic decomposition of each concept
node into hierarchically ordered sub-nodes corresponding to Bloom's revised taxonomy
cognitive levels (Sudirtha et al., 2022). The system subsequently computes the primary CReD
score as the shortest path distance from failed nodes to identified root gaps within the
prerequisite hierarchy, while maintaining a categorical inventory of external touchpoints across
predefined conceptual domains. Finally, the framework transforms interaction patterns into
sparse matrices compatible with Item Response Theory (IRT) models, enabling standardized
ability estimation, concept difficulty calibration, and at-risk student identification through

established psychometric methods.

2.2 Curricular Resource Ingestion

The CReD framework begins by transforming teacher-provided instructional resources into a
machine-readable representation of the course's conceptual structure. These resources may
include digitized textbooks, lesson plans, and structured syllabus outlines. Textual content is first
normalized and converted to a uniform internal markup format to preserve headings, lists, and

table structures.

Concept extraction proceeds via hierarchical text segmentation. Section and subsection headings
are parsed to identify candidate concept boundaries, supplemented by semantic paragraph

clustering using transformer-based sentence embedding models to group content describing the



same instructional objective. This process yields discrete concept units, each corresponding to a

node in the eventual prerequisite graph.

2.3 Prerequisite Graph Construction

Following concept extraction, the identified concept units are organized into a directed acyclic
graph where each vertex corresponds to a distinct instructional concept and each directed edge
denotes that one concept must be mastered before another can be effectively learned, forming a

prerequisite graph (ACE, 2024).

Prerequisite relationships are inferred through multiple complementary mechanisms. First,
explicit ordering cues present in the instructional materials, such as textbook chapter sequencing
and syllabus topic order, are converted into directed edges under the assumption that earlier-
presented concepts serve as potential prerequisites for later ones. Second, semantic analysis of
prerequisite indicators within the text detects linguistic cues such as "requires understanding of,"

"builds upon," and "before attempting” to identify/validate dependency relationships.

Additional sources may include concept maps derived from educational standards, established
taxonomies within specific domains, or combinations of these approaches. Different subjects
require different techniques for prerequisite detection, and the framework accommodates various
methodologies to classify concept relationships as prerequisite, co-requisite, or independent

based on domain-specific characteristics and available resources.

To ensure topological validity, the resulting graph undergoes automated cycle detection with any
identified cycles flagged for resolution to preserve acyclicity (Bender et al., 2015). A hierarchical

compression step prevents over-fragmentation by aggregating concept units sharing identical



prerequisite sets and overlapping instructional objectives into composite nodes (Zhang et al.,
2025). This reduces graph density and improves interpretability for subsequent Bloom's-level

decomposition and CReD computation.

Teachers retain oversight through a streamlined review interface that presents the generated
prerequisite map for validation and adjustment. Rather than requiring extensive manual curation,
the system highlights automatically detected relationships that may warrant attention, such as
potential cycles or unexpected dependencies. This human-in-the-loop validation ensures
pedagogical accuracy while leveraging automated processing to reduce teacher workload (ACE,
2024). As students interact with the system over time, empirical performance data through
psychometric analysis provides additional validation of prerequisite relationships, creating a
feedback mechanism that can refine the conceptual structure without requiring ongoing manual

intervention (Xu & Mostow, 2013).

2.4 Bloom's Taxonomy Integration

To capture intra-concept cognitive progression, each concept node in the prerequisite graph is
decomposed into six sequential sub-nodes corresponding to Bloom's revised taxonomy:
Remember, Understand, Apply, Analyze, Evaluate, and Create (Anderson & Krathwohl, 2001).
These sub-nodes are connected by directed vertical edges, forming a hierarchical chain within
the same concept, where mastery of level L typically serves as a prerequisite for attempting
Li+1. No horizontal edges are created between Bloom levels of different concepts; inter-concept

prerequisites exist only at the parent concept node level.



The decomposition process uses automated classification to assign learning statements and
associated activities to appropriate Bloom levels (Banujan et al., 2023). This is followed by
teacher verification to ensure pedagogical accuracy. Li et al. (2022) demonstrated automated
decomposition of learning material into Bloom levels with a human-in-the-loop annotation/
validation mechanism. This hierarchical structure enables the CReD computation to distinguish
between different cognitive depths of understanding within individual concepts while

maintaining clear prerequisite relationships across the broader conceptual framework.

2.5 Mastery Probability Estimation

In the absence of historical performance data, mastery probabilities psc1 for student s, concept c,
and Bloom cognitive level L are dynamically estimated using in-system assessments derived
from the ingested curricular materials. The system operates with dual probability tracking:
internal mastery probabilities for concepts within the structured curriculum, and external mastery

probabilities for knowledge requirements that fall outside the primary learning sequence.

2.5.1 External Knowledge Detection and Evaluation

Majnik et al. (2013) has proposed a systematic approach to knowledge gap detection in
automated learning systems, and providing individual diagnostics to teachers. The system
monitors student interactions for external knowledge gaps through incorrect responses
suggesting missing foundational skills, student queries requesting clarification on assumed
knowledge, and semantic analysis revealing conceptual blind spots. When detected, the system
creates external nodes representing these knowledge requirements and employs a criticality

evaluation mechanism to distinguish between consequential and non-consequential gaps



(Schmidt, 2020). External nodes are classified as critical if they represent fundamental cognitive
or academic skills necessary for concept mastery (e.g., basic arithmetic operations, reading
comprehension), versus contextual nodes involving domain-specific cultural knowledge that can
be bypassed without compromising learning objectives (e.g., unfamiliarity with specific sports
terminology used in a word problem). Only critical external nodes undergo formal mastery
probability estimation through targeted micro-assessments to evaluate pse 1 for student s, external

node e, and cognitive level L.

2.5.2 Mastery Probability Calculation

During assessment, the system evaluates mastery of preceding lower levels within the same
concept while assessing any critical external dependencies. Mastery probability pscL is

calculated using Bayesian estimation with flexible priors that adapt to the available evidence:

Ps.c.L = (correct responses + o) / (total responses + o + f3)

Where the prior parameters adjust based on question availability: for single-question
assessments, 0=0.5 and f=0.5 provide weak priors that allow higher probability estimates; for
two-question assessments, 0=1 and =1 establish uniform priors; and for three or more
questions, a=2 and =1 create slightly optimistic priors that allow the data to dominate the
estimate. Similar to the way Sapountzi et al. (2021) demonstrated adaptive Bayesian updating for
monitoring learner knowledge states, this dynamic prior adjustment balances evidence with
uncertainty and supports more reliable mastery estimation across varying assessment conditions.
Students are classified as demonstrating mastery when their estimated probability exceeds 0.75

for internal concept nodes and 0.70 for critical external nodes.



2.6 CReD Computation

The system computes a Conceptual Regression Depth (CReD) score whenever a student fails an
assessment at a given concept-Bloom level pair (c,L). The computation operates through two
parallel processes: internal prerequisite path analysis for the primary CReD score, and external

touchpoint identification for supplementary profiling.

2.6.1 Internal Prerequisite Analysis

The CReD computation begins with a backtracking search through the prerequisite graph. The
search first moves vertically within the same concept, traversing down the Bloom hierarchy from
level L toward "Remember." If mastery gaps are detected at lower levels within the same

concept, the traversal continues horizontally to prerequisite concepts identified in the DAG.

At each visited node (c’,L"), the system evaluates the mastery probability psc 1’ against the
established thresholds (0.75 for internal nodes, 0.70 for critical external nodes). Contextual cues
can allow skipping nodes. The stopping condition is met when the first node with mastery
probability below threshold is found. This node is designated as the internal root gap,
representing the earliest cognitive or conceptual deficiency within the prerequisite structure that

explains the observed failure at (c,L).

The primary CReD score is defined as the length of the shortest path from the failed node (c,L)
to the internal root gap (c’,L"). Liang et al. (2015) has demonstrated the success of a single metric

reference distance approach over supervised learning methods.



2.6.2 External Touchpoint Analysis

Simultaneously, the system identifies critical external knowledge deficiencies that may
contribute to the failure at (c,L). External touchpoints are categorized into predefined high-level
conceptual domains established during system configuration, such as Arithmetic (Addition,
Subtraction), Reading Comprehension (Inference, Vocabulary), or Logical Reasoning
(Conditional Statements, Pattern Recognition). Schmidt (2020) demonstrates broad classification
of knowledge gaps and their identification. Each identified external touchpoint is recorded with
its categorical classification and assessed mastery level, providing a complementary diagnostic

profile that informs intervention beyond the structured curriculum sequence.

2.6.3 CReD Output Format

The system outputs CReD analysis in three complementary dimensions. The internal distance
dimension quantifies the number of prerequisite hops from the failure point to the identified root
gap within the concept hierarchy. The cognitive complexity dimension specifies the Bloom level
L’ of the internal root gap, indicating the cognitive complexity at which remediation should
begin. The external profile provides a categorized inventory of external touchpoints with their
respective mastery assessments, enabling comprehensive intervention planning that addresses

curricular and foundational skill gaps.

2.7 Managing Item Sparsity

While the system predominantly leverages educator supplied material to extract evaluation items

for each concept node and sub-nodes, we acknowledge that conversational learning requires



repeated and non-redundant evaluation which may not always be adequately supplied by
curricular artifacts. Russell-Lasalandra et al. (2025) demonstrate the success and utility of
generative Al in developing items for underrepresented constructs. By integrating large language
models with network psychometrics, their approach generates scales with structural validity
comparable to traditional expert-developed measures (Russell-Lasalandra et al., 2025). Although
this reduces reliance on manual intervention, our focus is on validating item—concept pairs and

expanding the pool of evaluation resources available to educators and the ITS.

3. Psychometric Modeling via Sparse Matrix Construction

3.1 Rationale and Approach

Psychometric evaluations are commonly employed to recognize students’ unique learning
profiles and customize instructional strategies to meet their needs (Fletcher & Vaughn, 2009).
The prerequisite hop data generated by CReD computation provides a foundation for
psychometric analysis through Item Response Theory (IRT) modeling. By transforming
individual student-concept interaction patterns into sparse matrices, we apply established
psychometric frameworks to extract latent ability parameters and concept difficulty estimates

that complement the deterministic CReD scores with probabilistic insights.

Our approach leverages the 2-Parameter Logistic (2PL) IRT model, which balances analytical
tractability with meaningful parameter interpretation. The 2PL model estimates both concept
difficulty (B) and discrimination (o) parameters while providing student ability (0) estimates,
making it well-suited for educational applications where both student proficiency and concept

characteristics matter.



3.2 Sparse Matrix Construction

For each student s and concept-Bloom level pair (c,L), we construct a sparse interaction matrix
M where rows represent students, columns represent concept-Bloom level pairs, and cell values
M[s,(c,L)] encode interaction outcomes. The encoding scheme assigns values of 1 for mastery
achieved (probability > threshold), O for failure requiring regression (CReD > 0), and missing

entries for unrecorded interactions.

To optimize matrix density, we implement temporal aggregation within rolling time windows,
focus initially on core cognitive levels (Remember, Understand, Apply), and apply minimum
interaction thresholds for reliable parameter estimation. Zhang et al. (2025) proposed a similar

framework to address data sparsity in multidimensional learning performance datasets.

3.3 IRT Model Implementation

We implement the 2PL IRT model:

exp (a(C,L) (65— B(C,L)))
1+ exp (O((C,L) : (es - B(C,L)))

P(XS,(C,L) =1 | eS'O((C,L)' B(C,L)) =

Where:

Where 6 represents student ability, B, 1) represents concept-Bloom difficulty, and o 1)
represents concept-Bloom discrimination. Parameter estimation employs Marginal Maximum
Likelihood Estimation (MMLE) using E-M algorithms for sparse data and Expected A Posteriori

(EAP) for individual student ability estimates (Dempster et al., 1977).



3.4 Educational Applications

3.4.1 Student Profiling and Risk Identification

The IRT model generates standardized ability estimates (0) that indicate overall academic
proficiency relative to peer groups. Longitudinal tracking of 6 changes identifies patterns of
learning acceleration or deceleration, enabling early identification of students requiring
intervention. At-risk classification flags students with 0 estimates below -1.0 for intensive

support consideration.

3.4.2 Concept Difficulty Calibration

Difficulty parameters (B) enable empirical validation of prerequisite sequences by comparing
statistically-derived difficulty estimates with theoretical learning progressions. Discrimination
parameters (o) identify concepts with low values (a < 0.5) that fail to effectively differentiate

between student ability levels, indicating potential assessment or instructional design issues.

3.5 Implementation Validation

Psychometric evaluations are commonly employed to recognize students’ unique learning
profiles and customize instructional strategies to meet their needs (Fletcher & Vaughn, 2009).
Psychometric data extracted from the system can be leveraged to validate prerequisite paths and
candidate remediation routes, ensuring that the conceptual dependencies and suggested learning
interventions are empirically supported. This provides critical reinforcement, enabling the system
to adaptively self-refine. Prior work demonstrates the value of such an approach; Chen and

Chang (2018) highlight the success of psychometric methods in guiding learning trajectory



development and topic recommendation, underscoring that data-driven psychometric integration
into instructional design is well-established and effective. Teacher oversight remains essential as

the final arbiter, ensuring alignment with pedagogical goals and contextual classroom needs.

4. Discussion

The CReD framework addresses a fundamental gap in educational technology by providing
systematic quantification of learning remediation requirements. Unlike existing approaches that
offer binary mastery classifications, CReD measures the cognitive distance between current
performance and prerequisite competencies, enabling more precise intervention targeting. This
approach also offers a remediation pathway by addressing knowledge gaps, promoting critical
thinking, instead of serving as a crutch. The integration with psychometric modeling through
IRT creates a comprehensive diagnostic system that combines immediate actionable insights

with longitudinal ability tracking.

The framework's reliance on teacher-provided curricular materials ensures pedagogical
alignment while reducing implementation barriers compared to systems requiring extensive
historical data collection. By constructing prerequisite graphs directly from instructional content,
the system maintains fidelity to classroom learning progressions rather than imposing external

taxonomic structures that may not reflect actual teaching practices.

The dual-metric approach distinguishes between internal prerequisite deficiencies within
established learning sequences and external knowledge gaps that fall outside the primary

curriculum. This distinction proves particularly valuable for identifying students whose



difficulties stem from foundational skills rather than sequential concept mastery, enabling more

targeted support allocation.

Several limitations warrant consideration. The framework's effectiveness depends on the quality
of prerequisite relationship detection and teacher validation of concept dependencies. Complex
domains with highly interconnected concepts may produce prerequisite graphs that oversimplify
actual learning relationships. A teacher in the loop mechanism helps mitigate this. Additionally,
the psychometric modeling component requires sufficient interaction density to generate reliable

parameter estimates, potentially limiting applicability in specialized or low-enrollment contexts.

The computational requirements for real-time CReD computation and IRT parameter estimation
may present scalability challenges in large educational deployments. However, the modular
architecture enables selective implementation of framework components based on available

resources and institutional priorities.

5. Case Study: Algebraic Equations

To illustrate the framework's operation, consider a middle school algebra curriculum focused on
solving linear equations. The curricular ingestion process identifies discrete concepts including
"Variables and Constants," "Basic Operations," "Equation Setup," "Isolation Techniques," and
"Solution Verification." Prerequisite graph construction establishes dependencies where

"Variables and Constants" precedes "Equation Setup," which precedes "Isolation Techniques."

Each concept undergoes Bloom's taxonomy decomposition. For "Isolation Techniques," the

system creates sub-nodes: Remember (recall isolation rules), Understand (explain why isolation



works), Apply (solve standard equations), Analyze (identify efficient solution paths), Evaluate

(verify solution correctness), and Create (formulate equations from word problems).

Consider a student who fails at the Apply level for "Isolation Techniques" with mastery
probability 0.60. The CReD computation initiates backtracking search, first checking lower
Bloom levels within the same concept. Finding adequate mastery at Remember (0.85) and
Understand (0.80) levels, the search moves horizontally to prerequisite concepts. At "Equation
Setup," the student demonstrates insufficient mastery at the Apply level (0.65), triggering
continued regression to "Basic Operations" where the Apply level shows mastery probability

0.45.

Simultaneously, external touchpoint analysis identifies critical gaps in "Arithmetic Operations"
(specifically integer operations with negative numbers) and "Reading Comprehension" (parsing
mathematical word problems). These external deficiencies are categorized within their respective

domains and assessed through targeted micro-evaluations.

The resulting CReD output specifies: internal distance of 2 hops (from "Isolation Techniques
Apply" to "Basic Operations Apply"), cognitive complexity at the Apply level, and external
profile indicating deficiencies in arithmetic operations and reading comprehension. This analysis
suggests that effective remediation requires addressing foundational arithmetic skills and

comprehension strategies before returning to algebraic isolation techniques.

The psychometric modeling component transforms this interaction pattern into sparse matrix
entries, contributing to IRT parameter estimation. Over time, the student's ability estimate (0 = -

0.8) indicates below-average mathematical proficiency, while concept difficulty parameters



reveal that "Basic Operations Apply" (B =-0.2) is empirically easier than "Isolation Techniques

Apply" (B = 0.4), validating the prerequisite structure.

For educational practitioners, this analysis provides concrete intervention guidance: prioritize
arithmetic operation practice and reading comprehension support before advancing to algebraic
techniques. The quantified regression depth indicates moderate remediation requirements, while
the external profile highlights the need for cross-curricular support beyond mathematics

instruction.

This systematic approach contrasts with traditional tutoring systems that might simply re-present
algebraic isolation problems, potentially reinforcing student frustration without addressing
underlying deficiencies. The CReD framework's diagnostic precision enables targeted resource
allocation and realistic expectations for remediation timeline, supporting more effective

educational intervention.
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