
Conceptual Regression Depth (CReD): A Framework for 

Psychometric-Integrated Tutoring Systems that Preserve 

Critical Thinking 

 
Syed A. Hadi 

SyedH@workmail.com 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:SyedH@workmail.com


 

Abstract 

Current Intelligent Tutoring Systems (ITS) face a critical paradox: while they can improve 

immediate performance, they often promote cognitive off-loading that fosters dependency rather 

than independent learning. This paper introduces Conceptual Regression Depth (CReD), a 

framework that leverages personalized and statistically validated prerequisite learning paths to 

guide remediation as an alternative to cognitive off-loading. CReD functions by parsing educator 

supplied instructional content into discrete concept units broken down by Bloom’s taxonomy 

cognitive levels representing nodes in a directed acyclic graph. The resulting knowledge tree 

guides learning, which is pedagogically aligned with the classroom, through the ITS. As students 

interact with the ITS, proficiency for each node is calculated through mastery probability 

estimation, which is represented as a temporal sparse matrix. This data is suitable for Item 

Response Theory (IRT) modeling which makes detailed psychometric analysis possible, offering 

several benefits; teachers obtain student level diagnostics, learning and remediation pathways 

can be validated, and educators can effectively design targeted intervention. CReD contributes a 

systematic method for bridging conversational AI with well-established psychometric methods, 

extracting insights that facilitate the responsible integration of generative AI in education.  

 

 



1. Introduction and Background 

1.1 The Promise and Peril of Intelligent Tutoring Systems 

Current Intelligent Tutoring Systems (ITS) excel at content personalization but require careful 

guardrails when applied in educational contexts. Research has raised significant concerns 

regarding the long-term impact of over reliance on these systems, revealing a troubling pattern: 

while AI tutoring can improve immediate performance, it may undermine the very skills 

education seeks to develop. 

A recent study by Michael Gerlich at SBS Swiss Business School demonstrated that increased 

reliance on artificial intelligence (AI) was associated with the erosion of critical thinking skills, 

largely due to cognitive off-loading, a process in which individuals reduce their mental effort by 

depending on AI tools (Gerlich, 2025). This finding was reinforced by controlled research at the 

University of Pennsylvania, which found that students performed better while using an AI tutor, 

yet once the tutor was removed, those same students performed worse compared with peers who 

had never relied on an AI system (Bastani et al., 2024). These findings suggest that students may 

come to use AI as a crutch, thereby missing opportunities to engage in independent thinking and 

problem-solving. 

1.2 Limitations of Current Approaches 

The effective implementation of ITS in education requires frameworks that not only support 

learning but also promote critical thinking and align with classroom pedagogy (Favero et al., 

2025). However, existing ITS approaches reveal important limitations across multiple 

dimensions. Systems that assess student knowledge through binary mastery classifications, 



indicating only whether a concept is understood or not, may provide surface-level diagnostics 

and immediate remediation, but they do not offer systematic guidance on the depth of 

remediation needed (Ostrow et al., 2015). Research has shown that generative AI systems face 

systematic challenges in logical reasoning, limiting their capacity to diagnose foundational 

learning deficiencies without a structured instructional framework (Mirzadeh et al., 2025). 

Framework-based AI tutors that impose externally designed taxonomic structures risk 

misalignment with classroom pedagogies (Díaz & Nussbaum, 2024). Additionally, external 

taxonomic structures may risk Simplicity Bias caused by large language models (LLM) through 

more complex terminology than necessary (Kuribayashi et al., 2024). Importantly, current 

educational technologies more broadly lack integration with robust measurement and 

psychometric modeling (Chang, 2024).  

1.3 The Conceptual Regression Depth Framework 

To address these challenges, this paper introduces Conceptual Regression Depth (CReD), a 

framework that quantifies prerequisite learning distances while simultaneously generating 

psychometric profiles from conversational learning data. This work was influenced by Hu (2024) 

who stated: 

"While the journey towards intelligent adaptive learning systems is complex and uncharted, the 

destination is one worth pursuing. By thoughtfully leveraging AI to enhance psychometric 

assessments and personalized support, we have the potential to revolutionize education, enabling 

every student - regardless of their learning difficulties - to thrive and reach their full potential. It 



is a grand challenge, but one that promises profound benefits for individual learners, 

educational equity and society at large." 

Unlike traditional applications of psychometric approaches that rely on formal assessments, 

CReD-integrated ITS transforms patterns of student interaction, including mistakes, questions, 

and problem-solving attempts, into Item Response Theory parameters that capture individual 

ability estimates and concept difficulty calibrations. The proposed system draws topic 

progression, content guidelines and item banks from teacher-supplied artifacts that align with a 

student's classroom learning environment. 

This approach provides teachers with precise diagnostic information about student progress and 

enables evidence-based refinement of learning trajectories and remediation pathways. In doing 

so, the framework strengthens foundational concepts by providing attentive remediation and 

promoting critical thinking through the ITS, rather than serving as a crutch. 

1.4 Addressing Educational Workforce Challenges 

Beyond technological considerations, the framework also responds to pressing challenges in the 

educational workforce. Public schools in the United States entered the 2024–25 academic year 

with an average of six teaching vacancies, and seventy-four percent reported difficulty filling one 

or more of those positions with fully certified teachers (NCES, 2024). A review conducted by the 

Learning Policy Institute in July 2025 reported that one in eight teaching positions was either 

unfilled or staffed by under-qualified teachers (LPI, 2025). Simultaneously, educational 

outcomes reveal urgent needs for individualized support. The Nation's Report Card in 2024 

revealed that fewer than one-third of students nationwide were performing at the National 



Assessment of Educational Progress (NAEP) Proficient level in reading at grades four and 

twelve (NAGB, 2025).  

By introducing a human-in-the-loop design, the CReD framework augments rather than replaces 

teachers, offering guided support that mirrors classroom pedagogy while equipping educators 

with diagnostics that would otherwise require dramatically smaller class sizes. Our framework 

extends the reach of quality instruction beyond traditional classroom constraints while preserving 

the central role of educators in the learning process. 

2. Methodology 

2.1 System Overview 

We propose a computational framework for Conceptual Regression Depth (CReD), a system that 

leverages prerequisite relationships in a structured concept hierarchy and external knowledge 

deficiencies that contribute to learning gaps to guide remediation. Our approach constructs the 

concept graph and progression rules directly from teacher-supplied curricular artifacts, including 

textbook chapters, lesson plans, and instructional notes. By grounding the prerequisite structure 

in instructional materials familiar to the learner, the system ensures alignment with classroom 

pedagogy and facilitates contextually relevant remediation. 

The framework operates through six sequential and interdependent stages that transform 

curricular content into diagnostic and psychometric profiles. Beginning with automated parsing 

and semantic structuring of teacher-uploaded instructional content into discrete concept units, the 

system extracts inter-concept dependency relations and represents them as a directed acyclic 

graph (DAG) to preserve logical learning order. The system identifies and categorizes critical 



external knowledge requirements that fall outside the primary learning sequence but remain 

essential for concept mastery, followed by systematic decomposition of each concept node into 

hierarchically ordered sub-nodes corresponding to Bloom's revised taxonomy cognitive levels 

(Sudirtha et al., 2022). The system subsequently computes the primary CReD score as the 

shortest path distance from failed nodes to identified root gaps within the prerequisite hierarchy, 

while maintaining a categorical inventory of external touchpoints across predefined conceptual 

domains. Finally, the framework transforms interaction patterns into sparse matrices compatible 

with Item Response Theory (IRT) models, enabling standardized ability estimation, concept 

difficulty calibration, and at-risk student identification through established psychometric 

methods. 

2.2 Curricular Resource Ingestion 

The CReD framework begins by transforming teacher-provided instructional resources into a 

machine-readable representation of the course's conceptual structure. These resources may 

include digitized textbooks, lesson plans, and structured syllabus outlines. Textual content is first 

normalized and converted to a uniform internal markup format to preserve headings, lists, and 

table structures. 

Concept extraction proceeds via hierarchical text segmentation. Section and subsection headings 

are parsed to identify candidate concept boundaries, supplemented by semantic paragraph 

clustering using transformer-based sentence embedding models to group content describing the 

same instructional objective. This process yields discrete concept units, each corresponding to a 

node in the eventual prerequisite graph. 



2.3 Prerequisite Graph Construction 

Following concept extraction, the identified concept units are organized into a directed acyclic 

graph where each vertex corresponds to a distinct instructional concept and each directed edge 

denotes that one concept must be mastered before another can be effectively learned, forming a 

prerequisite graph (ACE, 2024). 

Prerequisite relationships are inferred through multiple complementary mechanisms. First, 

explicit ordering cues present in the instructional materials, such as textbook chapter sequencing 

and syllabus topic order, are converted into directed edges under the assumption that earlier-

presented concepts serve as potential prerequisites for later ones. Second, semantic analysis of 

prerequisite indicators within the text detects linguistic cues such as "requires understanding of," 

"builds upon," and "before attempting" to identify/validate dependency relationships. 

Additional sources may include concept maps derived from educational standards, established 

taxonomies within specific domains, or combinations of these approaches. Different subjects 

require different techniques for prerequisite detection, and the framework accommodates various 

methodologies to classify concept relationships as prerequisite, co-requisite, or independent 

based on domain-specific characteristics and available resources. 

To ensure topological validity, the resulting graph undergoes automated cycle detection with any 

identified cycles flagged for resolution to preserve acyclicity (Bender et al., 2015). A hierarchical 

compression step prevents over-fragmentation by aggregating concept units sharing identical 

prerequisite sets and overlapping instructional objectives into composite nodes (Zhang et al., 



2025). This reduces graph density and improves interpretability for subsequent Bloom's-level 

decomposition and CReD computation. 

Teachers retain oversight through a streamlined review interface that presents the generated 

prerequisite map for validation and adjustment. Rather than requiring extensive manual curation, 

the system highlights automatically detected relationships that may warrant attention, such as 

potential cycles or unexpected dependencies. This human-in-the-loop validation ensures 

pedagogical accuracy while leveraging automated processing to reduce teacher workload (ACE, 

2024). As students interact with the system over time, performance data through psychometric 

analysis provides additional validation of prerequisite relationships, creating a feedback 

mechanism that can refine the conceptual structure without requiring ongoing manual 

intervention (Xu & Mostow, 2013). 

2.4 Bloom's Taxonomy Integration 

To capture intra-concept cognitive progression, each concept node in the prerequisite graph is 

decomposed into six sequential sub-nodes corresponding to Bloom's revised taxonomy: 

Remember, Understand, Apply, Analyze, Evaluate, and Create (Anderson & Krathwohl, 2001). 

These sub-nodes are connected by directed vertical edges, forming a hierarchical chain within 

the same concept, where mastery of level Lk typically serves as a prerequisite for attempting 

Lk+1. No horizontal edges are created between Bloom levels of different concepts; inter-concept 

prerequisites exist only at the parent concept node level. 

The decomposition process uses automated classification to assign learning statements and 

associated activities to appropriate Bloom levels (Banujan et al., 2023). This is followed by 



teacher verification to ensure pedagogical accuracy. Li et al. (2022) demonstrated automated 

decomposition of learning material into Bloom levels with a human-in-the-loop annotation/ 

validation mechanism. This hierarchical structure enables the CReD computation to distinguish 

between different cognitive depths of understanding within individual concepts while 

maintaining clear prerequisite relationships across the broader conceptual framework. 

2.5 Mastery Probability Estimation 

Mastery probabilities ps,c,L for student s, concept c, and Bloom cognitive level L are dynamically 

estimated using in-system assessments derived from the ingested curricular materials. The 

system operates with dual probability tracking: internal mastery probabilities for concepts within 

the structured curriculum, and external mastery probabilities for knowledge requirements that 

fall outside the primary learning sequence. 

2.5.1 External Knowledge Detection and Evaluation 

Majnik et al. (2013) has proposed a systematic approach to knowledge gap detection in 

automated learning systems. The system monitors student interactions for external knowledge 

gaps through incorrect responses suggesting missing foundational skills, student queries 

requesting clarification on assumed knowledge, and semantic analysis revealing conceptual blind 

spots. When detected, the system creates external nodes representing these knowledge 

requirements and employs a criticality evaluation mechanism to distinguish between 

consequential and non-consequential gaps (Schmidt, 2020). External nodes are classified as 

critical if they represent fundamental cognitive or academic skills necessary for concept mastery 

(e.g., basic arithmetic operations, reading comprehension), versus contextual nodes involving 



domain-specific cultural knowledge that can be bypassed without compromising learning 

objectives (e.g., unfamiliarity with specific sports terminology used in a word problem). Only 

critical external nodes undergo formal mastery probability estimation through targeted micro-

assessments to evaluate ps,e,L for student s, external node e, and cognitive level L. 

2.5.2 Mastery Probability Calculation 

During interaction, the system evaluates mastery of preceding lower levels within the same 

concept while assessing any critical external dependencies. Mastery probability ps,c,L is 

calculated using Bayesian estimation with flexible priors that adapt to the available evidence: 

ps,c,L = (correct responses + α) / (total responses + α + β) 

Where the prior parameters adjust based on question availability: for single-question 

assessments, α=0.5 and β=0.5 provide weak priors that allow higher probability estimates; for 

two-question assessments, α=1 and β=1 establish uniform priors; and for three or more 

questions, α=2 and β=1 create slightly optimistic priors that allow the data to dominate the 

estimate. Similar to the way Sapountzi et al. (2021) demonstrated adaptive Bayesian updating for 

monitoring learner knowledge states, this dynamic prior adjustment balances evidence with 

uncertainty and supports more reliable mastery estimation across varying assessment conditions. 

Students are classified as demonstrating mastery when their estimated probability exceeds 0.75 

for internal concept nodes and 0.70 for critical external nodes. 



2.6 CReD Computation 

The system computes a Conceptual Regression Depth (CReD) score whenever a student fails an 

assessment at a given concept-Bloom level pair (c,L). The computation operates through two 

parallel processes: internal prerequisite path analysis for the primary CReD score, and external 

touchpoint identification for supplementary profiling. 

2.6.1 Internal Prerequisite Analysis 

The prerequisite path is analyzed through a CReD score computation which measures the depth 

of remediation required. While this score does not directly support student analytics, it evaluates 

knowledge states of interconnected concepts to diagnose learning gaps. The CReD computation 

begins with a backtracking search through the prerequisite graph. The search first moves 

vertically within the same concept, traversing down the Bloom hierarchy from level L toward 

"Remember." If mastery gaps are detected at lower levels within the same concept, the traversal 

continues horizontally to prerequisite concepts identified in the DAG. 

At each visited node (c′,L′), the system evaluates the mastery probability ps,c′,L′ against the 

established thresholds (0.75 for internal nodes, 0.70 for critical external nodes). Contextual cues 

can allow skipping nodes. The stopping condition is met when the first node with mastery 

probability below threshold is found. This node is designated as the internal root gap, 

representing the earliest cognitive or conceptual deficiency within the prerequisite structure that 

explains the observed failure at (c,L).  



The primary CReD score is defined as the length of the shortest path from the failed node (c,L) 

to the internal root gap (c′,L′). Liang et al. (2015) has demonstrated the success of a single metric 

reference distance approach in measuring prerequisite relationships.  

2.6.2 External Touchpoint Analysis 

Simultaneously, the system identifies critical external knowledge deficiencies that may 

contribute to the failure at (c,L). External touchpoints are categorized into predefined high-level 

conceptual domains established during system configuration, such as Arithmetic (Addition, 

Subtraction), Reading Comprehension (Inference, Vocabulary), or Logical Reasoning 

(Conditional Statements, Pattern Recognition). Schmidt (2020) demonstrates broad classification 

of knowledge gaps and their identification. Each identified external touchpoint is recorded with 

its categorical classification and assessed mastery level, providing a complementary diagnostic 

profile that informs intervention beyond the structured curriculum sequence. 

2.6.3 The CReD Score 

The system uses CReD measurements in three complementary dimensions. The internal distance 

dimension quantifies the number of prerequisite hops from the failure point to the identified root 

gap within the concept hierarchy. The cognitive complexity dimension specifies the Bloom level 

L′ of the internal root gap, indicating the cognitive complexity at which remediation should 

begin. The external profile provides a categorized inventory of external touchpoints with their 

respective mastery assessments, enabling comprehensive intervention planning that addresses 

curricular and foundational skill gaps. 



2.7 Managing Item Sparsity 

While the system predominantly leverages educator supplied material to extract evaluation items 

for each concept node and sub-nodes, we acknowledge that conversational learning requires 

repeated and non-redundant evaluation which may not always be adequately supplied by 

curricular artifacts. Russell-Lasalandra et al. (2025) demonstrate the success and utility of 

generative AI in developing items for underrepresented constructs. By integrating large language 

models with network psychometrics, their approach generates scales with structural validity 

comparable to traditional expert-developed measures (Russell-Lasalandra et al., 2025). Although 

this reduces reliance on manual intervention, our focus is on validating item–concept pairs and 

expanding the pool of evaluation resources available to educators and the ITS. 

3. Psychometric Modeling via Sparse Matrix Construction 

3.1 Rationale and Approach 

Psychometric evaluations are commonly employed to recognize students’ unique learning 

profiles and customize instructional strategies to meet their needs (Fletcher & Vaughn, 2009). 

The individual mastery probability calculations provide a foundation for psychometric analysis 

through Item Response Theory (IRT) modeling. By transforming individual student-concept 

interaction patterns into sparse matrices, we apply established psychometric methods to extract 

latent ability parameters and concept difficulty estimates.  

Our approach leverages the 2-Parameter Logistic (2PL) IRT model, which balances analytical 

tractability with meaningful parameter interpretation. The 2PL model estimates both concept 

difficulty (β) and discrimination (α) parameters while providing student ability (θ) estimates, 



making it well-suited for educational applications where both student proficiency and concept 

characteristics matter. 

3.2 Sparse Matrix Construction 

For each student s and concept-Bloom level pair (c,L), we construct a sparse interaction matrix 

M where rows represent students, columns represent concept-Bloom level pairs, and cell values 

M[s,(c,L)] encode interaction outcomes. The encoding scheme assigns values of 1 for mastery 

achieved (probability ≥ threshold), 0 for failure requiring regression (CReD > 0), and missing 

entries for unrecorded interactions. 

To optimize matrix density, we implement temporal aggregation within rolling time windows, 

focus initially on core cognitive levels (Remember, Understand, Apply), and apply minimum 

interaction thresholds for reliable parameter estimation. Zhang et al. (2025) proposed a similar 

framework to address data sparsity in multidimensional learning performance datasets. 

3.3 IRT Model Implementation 

We implement the 2PL IRT model: 

𝑃"𝑋!,($,%) = 1 ∣∣ θ!, α($,%), β($,%) + =
exp /α($,%) ⋅ "θ! − β($,%)+2

1 + exp /α($,%) ⋅ "θ! − β($,%)+2
 

Where: 

Where 𝜃! represents student ability, 𝛽($,%) represents concept-Bloom difficulty, and α($,%) 

represents concept-Bloom discrimination. Parameter estimation employs Marginal Maximum 



Likelihood Estimation (MMLE) using E-M algorithms for sparse data and Expected A Posteriori 

(EAP) for individual student ability estimates (Dempster et al., 1977). 

3.4 Educational Applications 

3.4.1 Student Profiling and Risk Identification 

The IRT model generates standardized ability estimates (θ) that indicate proficiency relative to 

peer groups. Longitudinal tracking of θ changes identifies patterns of learning acceleration or 

deceleration, enabling early identification of students requiring intervention. At-risk 

classification flags students with θ estimates below -1.0 for intensive support consideration. 

3.4.2 Concept Difficulty Calibration 

Difficulty parameters (β) enable empirical validation of prerequisite sequences by comparing 

statistically-derived difficulty estimates with in-system learning progressions and remediation 

pathways. Discrimination parameters (α) identify concepts with low values (α < 0.5) that fail to 

effectively differentiate between student ability levels, indicating potential assessment or 

instructional design issues. 

3.5 Implementation Validation 

Psychometric data extracted from the system can be leveraged to validate prerequisite paths and 

candidate remediation routes, ensuring that the conceptual dependencies and suggested learning 

interventions are empirically supported. This provides critical reinforcement, enabling the system 

to adaptively self-refine. Prior work demonstrates the value of such an approach; Chen and 



Chang (2018) highlight the success of psychometric methods in guiding learning trajectory 

development and topic recommendation, underscoring that data-driven psychometric integration 

into instructional design is well-established and effective. Teacher oversight remains essential as 

the final arbiter, ensuring alignment with pedagogical goals and contextual classroom needs. 

4. Discussion 

The CReD framework addresses a fundamental gap in educational technology by providing 

systematic quantification of learning remediation requirements. Our approach adaptively 

constructs remediation pathways by addressing knowledge gaps therefore promoting critical 

thinking instead of serving as a crutch. The integration with psychometric modeling through IRT 

creates a comprehensive diagnostic system that combines immediate actionable insights with 

longitudinal ability tracking. 

The framework's reliance on teacher-provided curricular materials ensures pedagogical 

alignment while reducing implementation barriers compared to systems requiring extensive 

historical data collection. By constructing prerequisite graphs directly from instructional content, 

the system maintains fidelity to classroom learning progressions rather than imposing external 

taxonomic structures that may not reflect actual teaching practices. 

The dual-metric approach distinguishes between internal prerequisite deficiencies within 

established learning sequences and external knowledge gaps that fall outside the primary 

curriculum. This distinction proves particularly valuable for identifying students whose 

difficulties stem from foundational skills rather than sequential concept mastery, enabling more 

targeted support allocation. 



Several limitations warrant consideration. The framework's effectiveness depends on the quality 

of prerequisite relationship detection and teacher validation of concept dependencies. Complex 

domains with highly interconnected concepts may produce prerequisite graphs that oversimplify 

actual learning relationships. A teacher in the loop mechanism helps mitigate this. Additionally, 

the psychometric modeling component requires sufficient interaction density to generate reliable 

parameter estimates, potentially limiting applicability in specialized or low-enrollment contexts. 

The computational requirements for real-time CReD computation and IRT parameter estimation 

may present scalability challenges in large educational deployments. However, the modular 

architecture enables selective implementation of framework components based on available 

resources and institutional priorities. 

5. Case Study: Algebraic Equations 

To illustrate the framework's operation, consider a middle school algebra curriculum focused on 

solving linear equations. The curricular ingestion process identifies discrete concepts including 

"Variables and Constants," "Basic Operations," "Equation Setup," "Isolation Techniques," and 

"Solution Verification." Prerequisite graph construction establishes dependencies where 

"Variables and Constants" precedes "Equation Setup," which precedes "Isolation Techniques." 

Each concept undergoes Bloom's taxonomy decomposition. For "Isolation Techniques," the 

system creates sub-nodes: Remember (recall isolation rules), Understand (explain why isolation 

works), Apply (solve standard equations), Analyze (identify efficient solution paths), Evaluate 

(verify solution correctness), and Create (formulate equations from word problems). 



Consider a student who fails at the Apply level for "Isolation Techniques" with mastery 

probability 0.60. The CReD computation initiates backtracking search, first checking lower 

Bloom levels within the same concept. Finding adequate mastery at Remember (0.85) and 

Understand (0.80) levels, the search moves horizontally to prerequisite concepts. At "Equation 

Setup," the student demonstrates insufficient mastery at the Apply level (0.65), triggering 

continued regression to "Basic Operations" where the Apply level shows mastery probability 

0.45. 

Simultaneously, external touchpoint analysis identifies critical gaps in "Arithmetic Operations" 

(specifically integer operations with negative numbers) and "Reading Comprehension" (parsing 

mathematical word problems). These external deficiencies are categorized within their respective 

domains and assessed through targeted micro-evaluations. 

The resulting CReD output specifies: internal distance of 2 hops (from "Isolation Techniques 

Apply" to "Basic Operations Apply"), cognitive complexity at the Apply level, and external 

profile indicating deficiencies in arithmetic operations and reading comprehension. This analysis 

suggests that effective remediation requires addressing foundational arithmetic skills and 

comprehension strategies before returning to algebraic isolation techniques. 

The psychometric modeling component transforms this interaction pattern into sparse matrix 

entries, contributing to IRT parameter estimation. Over time, the student's ability estimate (θ = -

0.8) indicates below-average mathematical proficiency, while concept difficulty parameters 

reveal that "Basic Operations Apply" (β = -0.2) is empirically easier than "Isolation Techniques 

Apply" (β = 0.4), validating the prerequisite structure. 



For educational practitioners, this analysis provides concrete intervention guidance: prioritize 

arithmetic operation practice and reading comprehension support before advancing to algebraic 

techniques. The quantified regression depth indicates moderate remediation requirements, while 

the external profile highlights the need for cross-curricular support beyond mathematics 

instruction. 

This systematic approach contrasts with traditional tutoring systems that might simply re-present 

algebraic isolation problems, potentially reinforcing student frustration without addressing 

underlying deficiencies. The CReD framework's diagnostic precision enables targeted resource 

allocation and realistic expectations for remediation timeline, supporting more effective 

educational intervention. 
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